3.1.3 \(\int (e \cot (c+d x))^{3/2} (a+a \cot (c+d x)) \, dx\) [3]

Optimal. Leaf size=94 \[ -\frac {\sqrt {2} a e^{3/2} \text {ArcTan}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d} \]

[Out]

-2/3*a*(e*cot(d*x+c))^(3/2)/d-a*e^(3/2)*arctan(1/2*(e^(1/2)-cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))*
2^(1/2)/d-2*a*e*(e*cot(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3609, 3613, 211} \begin {gather*} -\frac {\sqrt {2} a e^{3/2} \text {ArcTan}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x]),x]

[Out]

-((Sqrt[2]*a*e^(3/2)*ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/d) - (2*a*e*Sqrt
[e*Cot[c + d*x]])/d - (2*a*(e*Cot[c + d*x])^(3/2))/(3*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int (e \cot (c+d x))^{3/2} (a+a \cot (c+d x)) \, dx &=-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d}+\int \sqrt {e \cot (c+d x)} (-a e+a e \cot (c+d x)) \, dx\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d}+\int \frac {-a e^2-a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d}-\frac {\left (2 a^2 e^4\right ) \text {Subst}\left (\int \frac {1}{-2 a^2 e^4-e x^2} \, dx,x,\frac {-a e^2+a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} a e^{3/2} \tan ^{-1}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 a (e \cot (c+d x))^{3/2}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.11, size = 67, normalized size = 0.71 \begin {gather*} -\frac {2 a e \sqrt {e \cot (c+d x)} \left (\cot (c+d x) \, _2F_1\left (-\frac {3}{4},1;\frac {1}{4};-\tan ^2(c+d x)\right )+3 \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\tan ^2(c+d x)\right )\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x]),x]

[Out]

(-2*a*e*Sqrt[e*Cot[c + d*x]]*(Cot[c + d*x]*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2] + 3*Hypergeometric
2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2]))/(3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(77)=154\).
time = 0.37, size = 304, normalized size = 3.23

method result size
derivativedivides \(-\frac {a \left (\frac {2 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 e \sqrt {e \cot \left (d x +c \right )}-2 e^{2} \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )\right )}{d}\) \(304\)
default \(-\frac {a \left (\frac {2 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 e \sqrt {e \cot \left (d x +c \right )}-2 e^{2} \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )\right )}{d}\) \(304\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(3/2)*(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/d*a*(2/3*(e*cot(d*x+c))^(3/2)+2*e*(e*cot(d*x+c))^(1/2)-2*e^2*(1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(
e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e
^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^
(1/2)+1))+1/8/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*c
ot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(
1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))))

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 82, normalized size = 0.87 \begin {gather*} \frac {{\left (3 \, {\left (\sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right )\right )} a - \frac {6 \, a}{\sqrt {\tan \left (d x + c\right )}} - \frac {2 \, a}{\tan \left (d x + c\right )^{\frac {3}{2}}}\right )} e^{\frac {3}{2}}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/3*(3*(sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) -
2/sqrt(tan(d*x + c)))))*a - 6*a/sqrt(tan(d*x + c)) - 2*a/tan(d*x + c)^(3/2))*e^(3/2)/d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (74) = 148\).
time = 3.60, size = 165, normalized size = 1.76 \begin {gather*} -\frac {3 \, \sqrt {2} a \arctan \left (-\frac {{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, {\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )}}\right ) e^{\frac {3}{2}} \sin \left (2 \, d x + 2 \, c\right ) + 2 \, {\left (a \cos \left (2 \, d x + 2 \, c\right ) e^{\frac {3}{2}} + 3 \, a e^{\frac {3}{2}} \sin \left (2 \, d x + 2 \, c\right ) + a e^{\frac {3}{2}}\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}}}{3 \, d \sin \left (2 \, d x + 2 \, c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

-1/3*(3*sqrt(2)*a*arctan(-1/2*(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2*d*x + 2*c) + sqrt(2))*sqrt((cos(2*d*x
+ 2*c) + 1)/sin(2*d*x + 2*c))/(cos(2*d*x + 2*c) + 1))*e^(3/2)*sin(2*d*x + 2*c) + 2*(a*cos(2*d*x + 2*c)*e^(3/2)
 + 3*a*e^(3/2)*sin(2*d*x + 2*c) + a*e^(3/2))*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c)))/(d*sin(2*d*x + 2*c
))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx + \int \left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}} \cot {\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(3/2)*(a+a*cot(d*x+c)),x)

[Out]

a*(Integral((e*cot(c + d*x))**(3/2), x) + Integral((e*cot(c + d*x))**(3/2)*cot(c + d*x), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)*(e*cot(d*x + c))^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.16, size = 98, normalized size = 1.04 \begin {gather*} -\frac {2\,a\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{3\,d}-\frac {2\,a\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d}+\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,\left (1-\mathrm {i}\right )}{d}+\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,\left (-1-\mathrm {i}\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(3/2)*(a + a*cot(c + d*x)),x)

[Out]

((-1)^(1/4)*a*e^(3/2)*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*(1 - 1i))/d - (2*a*e*(e*cot(c + d*x))^
(1/2))/d - (2*a*(e*cot(c + d*x))^(3/2))/(3*d) - ((-1)^(1/4)*a*e^(3/2)*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2)
)/e^(1/2))*(1 + 1i))/d

________________________________________________________________________________________